Two new transformation formulas of basic hypergeometric series

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transformation formulas for multivariable basic hypergeometric series

Abstract. We study multivariable (bilateral) basic hypergeometric series associated with (type A) Macdonald polynomials. We derive several transformation and summation properties for such series, including analogues of Heine’s 2φ1 transformation, the q-Pfaff-Kummer and Euler transformations, the q-Saalschütz summation formula, and Sear’s transformation for terminating, balanced 4φ3 series. For ...

متن کامل

Short Proofs of Summation and Transformation Formulas for Basic Hypergeometric Series

We show that several terminating summation and transformation formulas for basic hypergeometric series can be proved in a straigntforward way. Along the same line, new finite forms of Jacobi’s triple product identity and Watson’s quintuple product identity are also proved.

متن کامل

Basic Hypergeometric Series

Abstract. We compute the inverse of a specific infinite r-dimensional matrix, thus unifying multidimensional matrix inversions recently found by Milne, Lilly, and Bhatnagar. Our inversion is an r-dimensional extension of a matrix inversion previously found by Krattenthaler. We also compute the inverse of another infinite r-dimensional matrix. As applications of our matrix inversions, we derive ...

متن کامل

Overpartition Pairs and Two Classes of Basic Hypergeometric Series

We study the combinatorics of two classes of basic hypergeometric series. We first show that these series are the generating functions for certain overpartition pairs defined by frequency conditions on the parts. We then show that when specialized these series are also the generating functions for overpartition pairs with bounded successive ranks, overpartition pairs with conditions on their Du...

متن کامل

Inversion of Bilateral Basic Hypergeometric Series

We present a new matrix inverse with applications in the theory of bilateral basic hypergeometric series. Our matrix inversion result is directly extracted from an instance of Bailey’s very-well-poised 6ψ6 summation theorem, and involves two infinite matrices which are not lower-triangular. We combine our bilateral matrix inverse with known basic hypergeometric summation theorems to derive, via...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2007

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2007.03.001